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Review: Adversarial Examples

Given a victim classifier C : [0, 1]n → Y , an image xori ∈ [0, 1]n and
a target label ytar ∈ Y , the optimization problem for finding an

adversarial instance xadv for xori can be formulated as follows [2]:

min D(xori, xadv) s.t. C(xadv) = ytar and xadv ∈ [0, 1]n (1)

Here, D is a distance can be represented by L1, L2, or L∞ norms.

However, solving (1) is challenging. [2] propose a relaxation:

min c1 D(xori, xadv) + c2 f (xadv, ytar) s.t. xadv ∈ [0, 1]n (2)

where c1, c2 are constants, and f is an objective function closely

tied to the classifier C ’s prediction. For example, in [2], f could

be the cross-entropy loss function.

Adversarial Examples: A Probabilistic Perspective

By applying box-constrained Langevin dynamics (LD) [1] as an opti-

mization method to (2), we get a Gibbs distribution:

padv(xadv|xori, ytar) ∝ pvic(xadv|ytar)pdis(xadv|xori) (3)

where pvic(xadv|ytar) ∝ exp(−c2 f(xadv, ytar)) and pdis(xadv|xori) ∝
exp(−c1 D(xori, xadv)).

Victim Distribution. By LD, we can sample

from pvic of the adversarially trained victim

classifier. The samples (right) display clear

digit structures, indicating the robust classi-

fier’s semantic understanding and resistance

to deception.

Distance Distribution. Let D be the

squared L2 norm, defined as D(a, b) = ‖a −
b‖2

2 - a common choice in adversarial attacks.

The resulting distance distribution pdis is a

Gaussian distribution, with samples (for a

suitable constant c1) shown on the right.

Adversarial Distribution. As illustrated in

(3), the adversarial distribution is the prod-

uct of pvic and pdis. The samples drawn from

padv (right) use appropriate values of c1, c2
and target class ytar = 1. Green borders in-

dicate successful attacks.

SoWhat? What Can This Perspective Bring to Us?

The probabilistic perspective enables us to replace traditional

geometry-based distance distributions with those fitted by mod-

ern probabilistic generative models (PGMs). Using PGMs as dis-

tance distributions offers two key advantages:

Semantic Injection: We can incorporate subjective semantic

understanding by training a PGM on semantic-preserving trans-

formations of the original input data xori.

Model Adaptation: We can leverage pretrained PGMs to cre-

ate semantically similar distributions around a single image xori

through fine-tuning.

Semantics-Invariant Data Augmentation

Let T be transformations that pre-

serve xori’s semantics. Training a

PGM on ti(xori) where ti ∈ T de-

fines pdis. This allows encoding

semantic beliefs into pdis – e.g., in-

cluding rotation, scaling and dis-

tortion in T if they’re deemed

semantics-preserving. The adver-

sarial examples based on this pdis
is shown on the right.
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Fine-Tuning Pretrained PGMs

By finetuning a pretrained PGM on xori, we obtain pdis around xori.

Below are samples drawn from padv compared with other methods.

Origin NCF cAdv ACE ColorFool c=5 c=10 c=20

Concrete PGM Implementations

We introduce two concrete PGM implementations for pdis:

Energy-based Model: Let Eθ denote the energy in the EBM that is

trained / finetuned around xori, then the adversarial distribution is

padv(xadv|xori, ytar) ∝ e−cf (xadv,ytar) e−Eθ(xadv)

with the corresponding Stein score:

∇xadv
log padv(xadv|...) = −c ∇xadv

f (xadv, ytar) − ∇xadv
Eθ(xadv) (4)

Samples from padv can then be drawn using Langevin dynamics (LD).

Diffusion Model: Let θ be the parameters of a diffusion model that

is trained / finetuned around xori, then

padv(x0|xori, ytar) ∝ pvic(x0|ytar)
∫

p(xT )
T∏

t=1
pθ(xt−1|xt)dx1...T

≈
∫

p(xT )
T∏

t=1
pvic(x̂0|t|ytar)1/Tpθ(xt−1|xt)dx1...T

where x̂0|t = 1√
ᾱt

(xt −
√

1 − ᾱt εθ(xt)) is estimated by Tweedie’s for-

mula as we cannot obtain x0 at every sampling step. Theorem 2 in

the paper shows that pvic(x̂0|t|ytar)1/Tpθ(xt−1|xt) is Gaussian. Algo-
rithm 2 in the paper illustrates how to draw samples from this padv.

FAQs

Just Another Diffusion + Adv. Attack Work? No. While combining

these methods may seem intuitive, previous works have largely

approached this combination in an ad hoc manner. In contrast, our

work is derived from the classical optimization problem defined in

(2) and provides a principled probabilistic perspective on adversarial

examples. For example, as shown in (4), our method naturally leads

to the addition of generative and adversarial gradients through

mathematical derivation, rather than through intuitive design.

How to Defend it? Our method circumvents robust classifiers since

they are typically trained against conventional adversarial examples,

not our semantic-preserving ones. However, defenders could adapt

by incorporating our generated examples into their training process,

creating a new form of adversarial training.
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