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A paradoxical result

An intuitive way to detect out-of-distribution (OOD) data is via the

density function of a fitted probabilistic generative model: points

with low density may be classed as OOD. But this naive approach

leads to a paradoxical result, as shown by Nalisnick et al. [6]:
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Figure 1. The left plot shows a PixelCNN model that is trained on FashionMNIST and tested on FashionMNIST (ID)

and MNIST (OOD); the right plot show a PixelCNN model that is trained on CIFAR10 and tested on CIFAR10 (ID)

and SVHN (OOD). The x-axis indicates the log-likelihood normalised by the data dimension and y-axis represents
the data counts. We can observe that OOD datasets consistently obtain higher test likelihood than ID datasets.

Plots are derived from [14].

Falsehoods

In fact, the naive approach to OOD detection is based on several

falsehoods:

that p(x) should be lower on OOD data;

that the paradoxical result arises from some deep-learning

dark magic;

that p(x) is suitable for comparing two distributions;

that low p(x) indicates lack of samples.

It is not a paradox

Suppose the training dataset is drawn from N(0, 1), and that

the training procedure has correctly learned the density p(x) =
N (x; 0, 1). Now consider an OOD dataset drawn from N(0, ε2) for
some small ε. Then the expected log likelihoods are

E log p(X) = 1
2

log 2π −

{
1/2 for in-distribution i.e. X ∼ N(0, 1)
ε2/2 for OOD i.e. X ∼ N(0, ε2).

We see that log p(X) is larger for out-of-distribution data. This isn’t a
paradox, it’s expected behaviour! And it arises from basic probability,

not from mysterious properties of deep generative modelling.

Nalisnick et al. [6]: ‘Our conclusion is that SVHN simply “sits inside

of” CIFAR10—roughly same mean, smaller variance—resulting in its

higher likelihood.’

Lack of samples?

Why was the result of Nalisnick et al. [6] surprising? The intuition is

something like this: the training dataset (CIFAR10) has no samples

that look anything like the OOD dataset (SVHN), therefore we

expect p(x) to be low on those OOD datapoints.

But, “Gaussian distributions are soap bubbles” [2]. The pdf is always

highest at the origin, and yet we are very unlikely to see any sample

points in a ball around the origin! [7] In otherwords, “lack of samples”

should not be confused with “low pdf”.

Comparing two distributions

Bishop [1] pointed out that OOD detection can be thought of

as model selection between the in-distribution pin and an out-of-

distribution pout.

In the paper, we show that the likelihood ratio is an optimal choice

from both frequentist and Bayesian perspectives. However, it is

hard to obtain pout.

OOD proxies

Several recent works on OOD detection can however be thought

of as using a likelihood ratio test based on a proxy distribution for

pout. Formally, we can propose an OOD proxy pproxyout , and use the

likelihood ratio pin/pproxyout as our OOD criterion.

Constant. Bishop [1] suggested we take pproxyout to be a constant because he thought that pout
should spread out widely in a large area. Then the likelihood ratio is identical to p(x) used
by Nalisnick et al. [6]. They reported that this choice of pproxyout leads to poor performance, as

measured by AUROC, in deep learning examples.

Auxiliary OOD datasets. It is natural to construct pproxyout by some real out-of-distribution

data. Hendrycks et al. [5] suggested that introducing an auxiliary OOD data (e.g. 80 Million

Tiny Images [3]) will increase the anomaly detection performance. Then, Schirrmeister et al.

[11] proposed a criterion using likelihood ratio between in-distribution pin and general image

distribution pg, where pg is trained by the aforementioned auxiliary OOD dataset, i.e. the pproxyout .

Furthermore, Zhang et al. [15] suggested that the likelihood ratio could be estimated by a

binary classifier.

Local features. Zhang et al. [14] proposed detecting OOD by using local models, i.e. models

constrained to capture only limited perceptual fields of the image. They observed that the

local models and full models assign similar likelihoods to OOD data, and infer that the local

features are shared between in-distribution and OOD datasets while non-local features are

not. They assume that the full model admits a decomposition pin(x) ∝ plocalin (x) pnonlocalin (x), and
propose that pnonlocalin should be used for detecting OOD data. This can be written as

pnonlocalin (x) ∝ pin(x)
plocalin (x)

which is our general-purpose likelihood ratio criterion, using the local model trained on in-

distribution data as the proxy OOD distribution.

Likelihood-ratio is not a hack

Most of the works introduced in OOD proxies use ‘failure’ or

some similar words to describe the phenomenon reported by

Nalisnick et al. [6]. They proposed solutions or patches based on

background statistics, local features, or data complexity to “fix

the issue”; and all of them have a final form in likelihood ratio.

According to Bishop [1], and as we discussed in Comparing two
distributions, density-based OOD detection is a special case

of likelihood-ratio-based OOD detection. Hence, we emphasise

that likelihood ratio is not a hack to fix density-based detection,

it is a principled way to detect OOD.

Discussion

Semantics v. domain distinction. The works we have discussed [9,

11, 12, 14, 15] include interpretations in the language of semantics.

Indeed, the benchmark proposed by Hendrycks and Gimpel [4]

is semantic: “We can see that SVHN is semantically different to

CIFAR10, so SVHN should be considered OOD.” But it’s hard to

define ‘semantics’ rigorously, and so semantic-basedOODdetection

can seem ad hoc. In our opinion, it’s simpler to treat OOD detection

as just a problem of detecting domains (pin versus pproxyout ), and this

leads directly to the very clean answer “use likelihood ratio”.

Generalisation of OOD proxies. We want an OOD proxy that can

distinguish the in-distribution domain from other domains, which is

so-called generalization. Hendrycks et al. [5] indicated that using

real auxiliary data as the OOD proxy has a better performance

than using the augmented in-distribution data. Investigating the

generalisation of OOD proxies is an open question, which we leave

to future work.
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