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Takeaway

Your finetuned large language model (LLM) already functions as a

powerful out-of-distribution (OOD) detector. After finetuning an

LLM, you obtain a new distribution pθ′ while still having access to

the pretrained distribution pθ. For any input sentence x, you can

easily calculate the likelihood ratio pθ(x)/pθ′(x), as an effective
criterion for OOD detection.

Currently, it is straightforward to access both a finetuned LLM and

its pre-trained version from online platforms such as Huggingface.

Calculating our proposed OOD criterion requires only feeding

the input through each model once, with no additional computa-

tional cost. Implementing the method requires only three lines

of code: calculate the log likelihood for each model separately,

then subtract them to obtain the criterion.

(Unsupervised) OOD Detection

Hendrycks and Gimple [4] established a baseline for deep learning

OOD detectionwhere a model trained onDtrain
in provides a detection

criterion S. Performance is evaluated by applying S to samples from

Dtest
in ∪ Dtest

out and measuring AUROC, AUPR, and FPR95 [11].

The term unsupervised refers to the setting where labels for in-

distribution data are not accessible.

Nalisnick’s Paradox

Given an input x, using the likelihood of in-distribution p(x) as an
OOD criterion seems straightforward, since in-distribution data

should have higher density within the in-distribution region. In

practice, researchers fit a probabilistic generative model (PGM) pθ

on Dtrain
in and use pθ(x) as the criterion to detect OOD samples [1].

However, Nalisnick et al. [6] find that for high-dimensional data

such as images, sometimes pθ(x) is higher for samples from Dtest
out

than for samples from Dtest
in . As illustrated in the figure below, OOD

data obtain higher likelihood, making OOD detection ineffective —

worse than random guessing.
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Likelihood Ratio and OOD Proxy

To address this paradox, several studies [8, 10, 9, 13, 2] have pro-

posed using likelihood ratios as the criterion for identifying OOD

data. [12] integrates these techniques into a comprehensive struc-

ture called the OOD proxy framework. In this framework, we as-

sume that OOD data follow a distribution pout which we cannot

directly access. A tractable solution is to build a proxy distribution

pproxyout to represent pout. The construction of these proxies incorpo-

rates empirically-based subjective understanding of OOD data: for

example, [8] found that ‘background statistics’ are shared between

in-distribution and OOD data, while [13] discovered that local fea-

tures are shared between in-distribution and OOD data, making

these effective OOD proxies. The criterion: S(x) = pproxyout (x)/pin(x).

Pretrained LLM as an OOD Proxy

Given the assumption that pretrained LLMs are trained on a com-

prehensive corpus of natural languages, we can assert that these

models capture the shared features across the entire spectrum

of natural languages. This characteristic naturally positions pre-

trained LLMs as effective OOD proxies.
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The figure illustrates how pretrained LLM OOD proxies more

accurately distinguish between in-distribution sentences and nat-

ural language compared to uniform OOD proxies.

Likelihood Ratio OOD Detection For QA Systems

ForQA systems, detecting OOD questions is vital but difficult due to

their brevity. Our approach leverages the observation that finetuned

LLMs produce reasonable answers for in-distribution questions but

unreasonable ones for OOD questions. We propose generating

an answer for each question, then applying OOD detection to the

question-answer pair rather than the question alone.

Experiments

Due to space limitations, only the results for Near OOD detection

are presented here.

Dataset In-D Label Model AUROC ↑ AUPR ↑ FPR95 ↓

ROSTD
No

Gangal et al. [3] 0.981 0.958 0.077

Jin et al. [5] 0.990 0.973 0.041

Llama-7B LH 0.960 0.890 0.168

Llama-7B LR 0.994 0.984 0.023

Mistral-7B LH 0.964 0.901 0.158

Mistral-7B LR 0.992 0.978 0.033

Llama-13B LH 0.965 0.905 0.166

Llama-13B LR 0.994 0.988 0.018

Yes Podolskiy et al. [7] 0.998 0.994 0.008

SNIPS
No

Gangal et al. [3] 0.955 0.903 0.192

Jin et al. [5] 0.963 0.910 0.145

Llama-7B LH 0.912 0.829 0.391

Llama-7B LR 0.993 0.986 0.029

Mistral-7B LH 0.912 0.819 0.417

Mistral-7B LR 0.987 0.968 0.087

Llama-13B LH 0.942 0.872 0.280

Llama-13B LR 0.995 0.988 0.028

Yes Podolskiy et al. [7] 0.978 0.933 0.120

CLINC150
No

Gangal et al. [3] 0.883 0.677 0.463

Jin et al. [5] 0.902 0.703 0.417

Llama-7B LH 0.821 0.456 0.538

Llama-7B LR 0.917 0.766 0.384

Mistral-7B LH 0.823 0.454 0.540

Mistral-7B LR 0.913 0.730 0.399

Llama-13B LH 0.820 0.450 0.546

Llama-13B LR 0.915 0.742 0.386

Yes Podolskiy et al. [7] 0.982 0.939 0.092

From the table, we can observe that using the likelihood ratio be-

tween the finetuned model and the pretrained model yields the

best performance in the unsupervised OOD detection.
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