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Takeaway

▶ θ: parameters of the pre-trained LLM
▶ θ′: parameters of the fine-tuned LLM on a specific domain

pθ(x)
pθ′(x)

: powerful OOD detector

Implementation in 3 lines:

pre_log_likelihood = -pretrained_model(x).loss * len(x)

fine_log_likelihood = -finetuned_model(x).loss * len(x)

log_ratio = pre_log_likelihood - fine_log_likelihood

Note: loss of autoregressive LLMs = average NLL per token
(perplexity).
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Takeaway

Why?
3 / 9



Assumption of OOD Distribution

▶ Data come from a true distribution ptrue

▶ We only observe in-distribution data ⇒ assume they
follow pin

▶ Extra assumption (not typical): OOD data also follow
some distribution pout

Neyman–Pearson lemma: Given x , the optimal test is

pout(x)
pin(x)

.
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OOD Proxy

▶ The true pOOD is unknown

▶ Zhang & Wischik1: use a proxy distribution pproxy
OOD to

approximate the OOD distribution

pproxy
OOD (x)
pin(x)

Special case: If pproxy
OOD is uniform ⇒ criterion reduces to

in-distribution likelihood2

1Andi Zhang and Damon Wischik. “Falsehoods that ML researchers believe about OOD detection”. In: arXiv
preprint arXiv:2210.12767 (2022).

2Christopher M Bishop. “Novelty detection and neural network validation”. In: IEE Proceedings-Vision, Image
and Signal processing 141.4 (1994), pp. 217–222.
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Failure of the Uniform OOD Proxy

▶ Nalisnick et al.3 find: using uniform OOD proxy (pin(x) as
the criterion) can fail.

▶ In some cases, OOD samples get higher likelihood than
in-distribution samples.

−6 −4 −2 0

FMNIST

MNIST

Trained on Fashion-MNIST

−6 −4 −2

CIFAR

SVHN

Trained on CIFAR-10

Minus BPD ∝ likelihood. OOD likelihood > in-distribution likelihood
⇒ uniform OOD proxy is misleading.

3Eric Nalisnick et al. “Do deep generative models know what they don’t know?” In: International Conference on
Learning Representations (2019).
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Pretrained LLM as OOD Proxy

▶ We need some smarter OOD proxy

▶ In practice, OOD ̸= random characters from uniform
distribution which can be filted by low level methods

▶ OOD of interest: human language outside the domain
▶ Modern LLMs are trained on massive human-language

corpora ⇒ can serve as an OOD proxy:

pproxy
OOD (x)
pin(x)

=
pθ(x)
pθ′(x)

=
pretrained
finetuned

Any permutation of characters

Human language

Sentences in a specific domain
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Final Takeaway

▶ A finetuned LLM is already a powerful OOD detector

▶ Just calculate the likelihood ratio:

pθ(x)
pθ′(x)

▶ Can be implemented by 3 lines of code
▶ Gives you an OOD criterion for free if you already have a

finetuned LLM.
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Q & A

Thanks!
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